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Section 1. Determination of graphene CNP and 𝐸F

The accurate determination of the CNP in our devices is achieved using two distinct methods,

i.e., gate-dependent electronic transport measurements and THG intensity measurements.

Specifically, in electric transport measurements, we obtained the graphene resistance curve

as a function of back-gate voltage 𝑉g by recording the graphene resistance during the gate-

tuning near-field experiment (Figure S1a and c). The peak value of the resistance curve

corresponds to the graphene CNP. On the other hand, in THG intensity measurements, we

recorded the gate-dependent THG signal while sweeping the 𝑉g (Figure S1b, d, e and f).

The THG intensity of graphene will be minimum when 𝑉g is tuned to the CNP.1 Thus,

we can also determine the CNP from the THG intensity curve. The advantages of THG

measurement lie in its ability to precisely determine the CNP of monolayer graphene located

directly beneath the single-layer or twisted bilayer α-MoO3 where we performed the near-field

measurements. This approach allows us to eliminate the influence of inhomogeneous doping

in graphene on the 𝑉g value of CNP and accurately evaluate the properties of the graphene

region involved in the hybrid polariton system. Noting that during both electric transport

and THG measurements, devices were maintained in a dry air environment to avoid the

effects of atmospheric moisture on the devices. In general, the CNP obtained from these two

independent approaches is in good agreement (Figure S1). The precise determination of CNP

provides a solid foundation for systematically studying and understanding the gate-tuning

behavior of HPPPs.

Based on the precise acquisition of the CNP for graphene as detailed below, we are able to

accurately calculate and determine the 𝐸F. The relationship between 𝐸F and carrier density

𝑛 in graphene is:

𝐸F = ℏ |𝑣F |
√
𝜋𝑛 (S1)

where 𝑣F is the Fermi velocity in graphene (1.1 × 106 m/s), and ℏ is the reduced Planck’s
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constant. In our devices, 𝐸F is modulated by the back-gate voltage 𝑉g through:2

𝑉g −𝑉CNP =
𝐸F

𝑒
+ 𝑛𝑒

𝐶g
(S2)

where 𝑉CNP is the voltage at the CNP, 𝑒 is the electron charge, and 𝐶g = 𝜀𝜀0/𝑑g is the gate

capacitance with 𝜀0, 𝜀, and 𝑑g represent the permittivity of vacuum, the dielectric constant

and the thickness of the gating material (285 nm SiO2 in our devices), respectively. We can

thus derive the 𝐸F from equation (S2).
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Figure S1. Measured dependence of graphene resistance R and THG intensity on 𝑉g.

(a,b) Dependence of (a) graphene resistance and (b) THG intensity on 𝑉g for the 140 nm

single-layer α-MoO3/graphene device (Figure 2 in the main text). (c,d) Dependence of (c)

graphene resistance and (d) THG intensity on 𝑉g for the twisted bilayer α-MoO3/graphene

device (Figure 3b and c in the main text). (e,f) Dependence of THG intensity on 𝑉g for (e)

the 175 nm single-layer α-MoO3/graphene device (Figure S14) and (f) the twisted bilayer

α-MoO3/graphene device (Figure 3d-i in the main text).
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Section 2. Numerical simulations

The real-space full-wave simulations of HPPPs were conducted using the finite-difference

time-domain (FDTD) method, employing the commercially available software Lumerical

FDTD (2020b, http://www.lumerical.com/tcad-products/fdtd/). A linearly polarized plane-

wave was used to acquire HPPP fringes excited by α-MoO3 edges. The real part of the

out-of-plane electric field Re (𝐸z) was monitored.

The conductivity of graphene is given by non-approximate Kubo formula:3

𝜎(𝜔, 𝜏, 𝐸F, 𝑇) = 𝜎intra(𝜔, 𝜏, 𝐸F, 𝑇) + 𝜎inter(𝜔, 𝜏, 𝐸F, 𝑇) (S3)

𝜎intra(𝜔, 𝜏, 𝐸F, 𝑇) and 𝜎inter(𝜔, 𝜏, 𝐸F, 𝑇) are the contributions from intraband and interband

electron-photon scattering processes, respectively:

𝜎intra(𝜔, 𝜏, 𝐸F, 𝑇) =
−𝑖𝑒2

𝜋ℏ2(𝜔 + 𝑖
𝜏
)

∫ ∞

0
𝜉 ( 𝜕 𝑓𝑑 (𝜉)

𝜕𝜉
− 𝜕 𝑓𝑑 (−𝜉)

𝜕𝜉
)𝑑𝜉 (S4)

𝜎inter(𝜔, 𝜏, 𝐸F, 𝑇) =
𝑖𝑒2(𝜔 + 𝑖

𝜏
)

𝜋ℏ2

∫ ∞

0

𝑓𝑑 (−𝜉) − 𝑓𝑑 (𝜉)
(𝜔 + 𝑖

𝜏
)2 − 4( 𝜉

ℏ
)2
𝑑𝜉 (S5)

where 𝜏 is phenomenological relaxation time of graphene, 𝐸F is graphene Fermi energy, 𝑇 is

the temperature, ℏ is the reduced Plank constant, 𝑓𝑑 (𝜉) ≡ 1
𝑒 ( 𝜉−𝐸F )/(𝑘B𝑇 )+1 is the Fermi-Dirac

distribution, and 𝑘B is Boltzmann constant.

Considering that 𝜏 is influenced by various factors such as temperature, sample quality,

carrier mobility, and particularly Fermi energy of graphene,1,4 a fixed value of 𝜏 = 0.64 ps is

used for simplicity in our work, consistent with previous studies.5,6 While simulations with a

consistent 𝜏 capture the primary trend of our experimental data quite well, small deviations

can be expected as 𝐸F changes. Nevertheless, we believe this approach is sufficient for

offering a comprehensible physical explanation. The calculated real and imaginary parts of

𝜎(𝐸F) are shown in Figure S2a.
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In the mid-infrared region, the optical response of the α-MoO3 is dominated by photon

absorption instead of electronic transition. The permittivity tensor of α-MoO3, denoted as

¯̄𝜀MoO3 , can be described using the Lorentz oscillator:

𝜀 𝑗 (𝜔) = 𝜀∞𝑗 (1 +
𝜔LO2

𝑗
− 𝜔TO2

𝑗

𝜔TO2

𝑗
− 𝜔2 − 𝑖𝜔𝛤𝑗

), 𝑗 = 𝑥, 𝑦, 𝑧 (S6)

where 𝜀 𝑗 (𝜔) is the diagonal component of the ¯̄𝜀MoO3 at light frequency 𝜔, 𝜀∞
𝑗
= 𝜀 𝑗 (∞), 𝜔LO

𝑗

and 𝜔TO
𝑗

are the longitude optical (LO) and transverse optical (TO) phonon frequencies, and

𝛤𝑗 is the damping constant. The value of these parameters are obtained from the literature.7

The real and imaginary parts of 𝜀 𝑗 (𝜔) are shown in Figure S2c and d, respectively. The

permittivity of SiO2 is obtained from the literature.8
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Figure S2. Optical properties of graphene and α-MoO3. (a,b) Dependence of the real

(black curve) and imaginary (red curve) parts of (a) graphene conductivity and (b) relative

permittivity on 𝐸F at 931 cm−1. (c,d) (c) Real and (d) imaginary parts of α-MoO3 relative

permittivity along the 𝑥[100] (red curve), 𝑦[001] (black curve), and 𝑧[010] (blue curve) crystal

directions.

Section 3. Calculation of polariton dispersion

Transfer matrix method (TMM) was used to calculate the dispersion relation of HPPPs.9 In

our model, the single-layer α-MoO3/graphene heterostructure was regarded as a structure

containing four infinite large layers, i.e., air/α-MoO3/graphene/SiO2 (Figure S3a). Similarly,

the twisted bilayer α-MoO3/graphene heterostructure was modeled as a structure containing

five infinite large layers, i.e., air/top α-MoO3/bottom α-MoO3/graphene/SiO2 (Figure S3b).
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We assumed graphene has a very small thickness Δ with bulk conductivity 𝜎𝑔,𝑣 = 𝜎𝑔/Δ, where

𝜎𝑔 is graphene conductivity. Thus we can treat graphene as a bulk dielectric material with

equivalent complex permittivity 𝜀𝑔,𝑣 =
𝜎𝑔,𝑣

−𝑖𝜔 + 𝜀0, where 𝜀0 is the permittivity of vacuum.10

The imaginary part of the reflection coefficient for 𝑝-polarized incident beams 𝑟pp was used

to visualize the polariton dispersion.

Figure S3. Illustration of the layered structures used in calculating polariton dispersion

with transfer matrix method. (a,b) Layered structure of the (a) single-layer and (b) twisted

bilayer α-MoO3/graphene. Gray, dark green, light green, yellow, and blue areas represent air,

top α-MoO3 layer, bottom α-MoO3 layer, graphene, and SiO2, respectively. The thickness

of graphene layer is 0.34 nm.

Section 4. Theoretical calculation of relation between

HPPP complex momentum and graphene conductivity

The relationship between the complex momentum of HPPPs and the conductivity of graphene

was theoretically calculated using electromagnetic wave theory with appropriate boundary

conditions. In the calculation, α-MoO3 and graphene were modeled as two-dimensional

infinite conductors. The conductivity tensor of α-MoO3 ¯̄𝜎MoO3 satisfies:

¯̄𝜎MoO3 = −𝑖𝜔𝑑𝑡𝜀0 ¯̄𝜀MoO3 (S7)
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where 𝜔 is the frequency of excitation laser, 𝑑𝑡 is the thickness of α-MoO3, 𝜀0 is the per-

mittivity of vacuum, and ¯̄𝜀MoO3 is the second-order permittivity tensor of α-MoO3. Due

to the significant field confinement in the structure, only transverse magnetic (TM) modes

were considered in our theoretical calculation, as the contribution of transverse electric (TE)

components was deemed negligible.

For the single-layer α-MoO3/graphene heterostructure, the entire structure was divided

into three regions by the α-MoO3 layer at 𝑧 = 0 and the graphene layer at 𝑧 = 𝑑 (𝑑 < 0) :

region 1 (𝑧 > 0, air), region 2 (𝑑 < 𝑧 < 0, free space), and region 3 (𝑧 < 𝑑, SiO2 substrate)

(Figure S4a). The boundary conditions for electromagnetic waves are:

�̂� × (𝑬1 − 𝑬2) = 0, �̂� × (𝑯1 − 𝑯2) = ¯̄𝜎MoO3𝑬1, 𝑎𝑡 𝑧=0 (S8)

�̂� × (𝑬2 − 𝑬3) = 0, �̂� × (𝑯2 − 𝑯3) = ¯̄𝜎Gr𝑬3, 𝑎𝑡 𝑧=𝑑 (S9)

where 𝑬𝑖 and 𝑯𝑖 are electric and magnetic fields in region 𝑖, 𝑖 = 1, 2, 3, respectively, and

¯̄𝜎Gr is the conductivity tensor of graphene. In the 𝑥𝑦𝑧 coordinate, the general solutions for

electromagnetic waves in different regions parallel to the interfaces are:

𝑯1 = 𝒚𝐴+
1𝑒

𝑖𝑞𝑧1 𝑧 (S10)

𝑬1 = 𝒙𝐴+
1

−1
𝜔𝜀1

(−𝑞𝑧1)𝑒𝑖𝑞𝑧1 𝑧 (S11)

𝑯2 = 𝒚(𝐴+
2𝑒

+𝑖𝑞𝑧2 𝑧 + 𝐴−
2 𝑒

−𝑖𝑞𝑧2 𝑧) (S12)

𝑬2 = 𝒙
−1
𝜔𝜀2

(−𝑞𝑧2𝐴+
2𝑒

+𝑖𝑞𝑧2 𝑧 + 𝑞𝑧2𝐴
−
2 𝑒

−𝑖𝑞𝑧2 𝑧) (S13)

𝑯3 = 𝒚𝐴−
3 𝑒

−𝑖𝑞𝑧3 𝑧 (S14)

𝑬3 = 𝒙
−1
𝜔𝜀3

(+𝑞𝑧3𝐴−
3 𝑒

−𝑖𝑞𝑧3 𝑧) (S15)

where 𝑞𝑧𝑖 =

√︃
𝜔2

𝑐2
𝜀𝑟𝑖 − (2𝜋 · 𝑞∥p )2 is the out-of-plane momentum of HPPPs in region 𝑖, 𝑞∥p is

the in-plane momentum of HPPPs, and 𝜀𝑟𝑖 = 𝜀𝑖/𝜀0 is the relative permittivity of region 𝑖,

𝑖 = 1, 2, 3. The boundary conditions in equations (S8, S9) combined with general solutions
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(S10-15) can be simplified into a matrix form as:

𝑇1𝐴1 = 0 (S16)

where

𝑇1 =

©«

𝑞𝑧1
𝜔𝜀1

− 𝑞𝑧2
𝜔𝜀2

𝑞𝑧2
𝜔𝜀2

0

−1 − 𝑞𝑧1𝜎1

𝜔𝜀1
1 1 0

0
𝑞𝑧2𝑒

𝑖𝑞𝑧2 𝑑

𝜔𝜀2
− 𝑞𝑧2𝑒

−𝑖𝑞𝑧2 𝑑

𝜔𝜀2

𝑞𝑧3𝑒
−𝑖𝑞𝑧3 𝑑

𝜔𝜀3

0 −𝑒𝑖𝑞𝑧2𝑑 −𝑒−𝑖𝑞𝑧2𝑑 (1 + 𝑞𝑧3𝜎2

𝜔𝜀3
)𝑒−𝑖𝑞𝑧3𝑑

ª®®®®®®®®¬
, 𝐴1 =

©«

𝐴+
1

𝐴+
2

𝐴−
2

𝐴−
3

ª®®®®®®®®¬
,

𝜎1 = ¯̄𝜎MoO3,xx, and 𝜎2 = ¯̄𝜎Gr,xx. In order for equation (S16) to have a non-zero solution, the

determinant of 𝑇1 must equal zero. Consequently, we can establish a correlation between

the conductivity of graphene and the out-of-plane momentum 𝑞𝑧𝑖 of HPPPs in single layer

α-MoO3/graphene heterostructure:

−(𝑞𝑧2𝜎2−𝜀2𝜔) (𝑞𝑧1𝑞𝑧2𝜎1−𝜀2𝑞𝑧1𝜔+𝜀1𝑞𝑧2𝜔)+𝑒2𝑖𝑑1𝑞𝑧2 (𝑞𝑧2𝜎2+𝜀2𝜔) (𝑞𝑧1𝑞𝑧2𝜎1+𝜀2𝑞𝑧1𝜔+𝜀1𝑞𝑧2𝜔) = 0

(S17)

To calculate the twisted bilayer α-MoO3/graphene structure (Figure S4b), we positioned

the bottom α-MoO3 layer in the 𝑥𝑦𝑧 coordinate, and rotated the top layer with respect to

the bottom with a twist angle 𝛿 (i.e., the angle between the [100] crystal directions of the

two α-MoO3 layers, as shown in Figure S4c). In order to obtain the conductivity tensor of

the top α-MoO3 layer in the 𝑥𝑦𝑧 coordinate, we defined a rotation matrix 𝑈:

𝑈 =
©«
cos𝛿 −sin𝛿

sin𝛿 cos𝛿

ª®®¬ (S18)

In the 𝑥𝑦𝑧 coordinate, the conductivity tensor of the top α-MoO3 layer ¯̄𝜎′
MoO3

and the

bottom α-MoO3 layer ¯̄𝜎MoO3 satisfy:

¯̄𝜎′
MoO3

= 𝑈 ¯̄𝜎MoO3𝑈
𝑇 (S19)
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that is

¯̄𝜎′
MoO3

=
©«
𝜎MoO3,xxcos𝛿

2 + 𝜎MoO3,yysin𝛿
2 (𝜎MoO3,xx − 𝜎MoO3,yy)cos𝛿sin𝛿

(𝜎MoO3,xx − 𝜎MoO3,yy)cos𝛿sin𝛿 𝜎MoO3,yycos𝛿
2 + 𝜎MoO3,xxsin𝛿

2

ª®®¬ (S20)

Similar to the single-layer α-MoO3 scenario, we can deduce that the determinant of 𝑇2 must

satisfy:

|𝑇2 | = 0 (S21)

where

𝑇2 =

©«

𝑞𝑧1
𝜔𝜀1

− 𝑞𝑧2
𝜔𝜀2

𝑞𝑧2
𝜔𝜀2

0 0 0

−1 − 𝑞𝑧1 𝜎1

𝜔𝜀1
1 1 0 0 0

0
𝑞𝑧2𝑒

𝑖𝑞𝑧2 𝑑1

𝜔𝜀2
− 𝑞𝑧2𝑒

−𝑖𝑞𝑧2 𝑑1

𝜔𝜀2
− 𝑞𝑧3𝑒

𝑖𝑞𝑧3 𝑑1

𝜔𝜀3

𝑞𝑧3𝑒
−𝑖𝑞𝑧3 𝑑1

𝜔𝜀3
0

0 (−1 − 𝑞𝑧2 𝜎2

𝜔𝜀2
)𝑒𝑖𝑞𝑧2𝑑1 (−1 + 𝑞𝑧2 𝜎2

𝜔𝜀2
)𝑒−𝑖𝑞𝑧2𝑑1 𝑒𝑖𝑞𝑧3𝑑1 𝑒−𝑖𝑞𝑧3𝑑1 0

0 0 0
𝑞𝑧3𝑒

𝑖𝑞𝑧3 𝑑2

𝜔𝜀3
− 𝑞𝑧3𝑒

−𝑖𝑞𝑧3 𝑑2

𝜔𝜀3

𝑞𝑧4𝑒
−𝑖𝑞𝑧4 𝑑2

𝜔𝜀4

0 0 0 −𝑒𝑖𝑞𝑧3𝑑2 −𝑒−𝑖𝑞𝑧3𝑑2 (1 + 𝑞𝑧4 𝜎3

𝜔𝜀4
)𝑒−𝑖𝑞𝑧4𝑑2

ª®®®®®®®®¬
,

𝜎1 = ¯̄𝜎′
MoO3,xx

, 𝜎2 = ¯̄𝜎MoO3,xx, and 𝜎3 = ¯̄𝜎Gr,xx. From equation (S21), we can establish

a correlation between the conductivity of graphene and the out-of-plane momentum 𝑞𝑧𝑖 of

HPPPs in twisted bilayer α-MoO3/graphene heterostructure.
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Figure S4. Schematic of the structures used in theoretical calculation with electromagnetic

wave theory. (a,b) (a) Single-layer and (b) twisted bilayer α-MoO3/graphene structure. The

top and bottom α-MoO3 layers are denoted as t-α-MoO3 and b-α-MoO3, respectively. (c)

Coordinates in the 𝑥𝑦 plane used in the theoretical calculation. 𝛿 is the angle between the

𝑥′ and 𝑥 axes.

Section 5. Two-phase homodyne near-field detection of

the twisted bilayer α-MoO3/graphene device

In homodyne near-field detection scheme where the reference arm is fixed at a specific posi-

tion (hereinafter, homodyne detection), the amplitude and phase information are convolved

in the detected near-field signal.11 To demonstrate that this convolution does not affect

the validity of our experimental findings, we also conducted two phase homodyne detec-

tion to extract both the amplitude and phase of near-field images.12–14 Specifically, we took

two measurements where the optical path difference of the reference beam is 𝜋/4 (corre-

sponding to a phase difference of 𝜋/2) and obtained two near-field images, 𝐼NF1 and 𝐼NF2 .

Then we can get the amplitude and phase near-field images by calculating
√︃
𝐼2
NF1

+ 𝐼2
NF2

and

arctan(𝐼NF2/𝐼NF1), respectively. Figure S5a shows the near-field image of a twisted bilayer

α-MoO3/graphene device acquired by homodyne detection with 𝐸F=-0.14 eV (corresponding

to 𝑉g = 0V). Figure S5b-d show the HPPP 𝜆p, 𝐴p, and 𝛾p extracted by fitting line pro-

files along the [100] crystal direction of the top α-MoO3 layer (white dashed line in Figure

13



S5a) using different near-field detection schemes. The results demonstrate that despite the

convolution of the phase and amplitude in homodyne detection, the gate-tuning behaviors

are the same as that obtained from two-phase homodyne amplitude detection. Due to the

time-consuming nature of two-phase homodyne detection, particularly in our gate-tuning

experiment where we needed to gather two images at each 𝑉g increment, we chose to use

homodyne detection to acquire gate-tuning data in other devices.
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Figure S5. Comparison between homodyne and two-phase homodyne near-field detection.

(a) Homodyne near-field image of a twisted bilayer α-MoO3/graphene device with 𝐸F =

−0.14 eV (corresponding to 𝑉g = 0V). The thicknesses of the top and bottom α-MoO3 layers

are 60 nm and 150 nm, respectively. The twist angle is 47◦. The edges of top and bottom α-

MoO3 layers are marked by blue and green dashed lines, respectively. Scale bar, 1µm. (b-d)

Dependence of (b) 𝜆p, (c) normalized 𝐴p, and (d) 𝛾p on 𝐸F, as fitted from experimental line

profiles of HPPPs along the [100] crystal direction of the top α-MoO3 layer (white dashed line

in (a)), which are extracted from homodyne (blue dots) and two-phase homodyne amplitude

(red dots) near-field images. The error bars represent the 95% confidence intervals. Gray

solid lines are guides for the eye.
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Section 6. Derivation of fitting equations

HPPP wave launches by the tip, which has not spread yet, can be described by the following

wave function:

𝜓tip = 𝐴 (S22)

where 𝐴 is the amplitude of the HPPP wave. The HPPP wave propagates along the [100]

crystal direction of α-MoO3 and is reflected by the α-MoO3 edge, reaching the tip and

interfere with the wave 𝜓tip. Taking into account the geometric spread, the reflected wave

can be expressed as:

𝜓ref = 𝐴𝑇𝑒−𝑖𝑞
∥
p𝑥𝑒𝑖𝜙0

1
√
𝑥

(S23)

where 𝑇 is the reflectance of the HPPP wave at the edge, 𝑞∥p = 2𝜋
𝜆p

+ 𝑖
2𝜋𝛾p
𝜆p

is the complex

in-plane momentum of the HPPP wave with wavelength 𝜆p and dissipation rate 𝛾p, 𝑒
𝑖𝜙0 is

the phase changing after wave reflection, and 𝑥 is the distance over which the HPPP wave

is travelling. The interference between 𝜓tip and 𝜓ref gives rise to interference wave 𝜓inter:

𝜓inter = 𝜓tip + 𝜓ref (S24)

Then, the intensity of the interference wave, which is also the intensity of near-field images

we measure in the experiment can be expressed by:

𝐼NF = 𝜓inter · 𝜓∗
inter (S25)

where 𝜓∗
inter is the complex conjugate of 𝜓inter. By substituting the equations (S22-24) into

(S25), we can deduce the equation used to fit the intensity of IR sSNOM line profiles:

𝐼NF = 𝐴p ·
𝑒
− 2𝜋𝛾p

𝜆p
𝑥

√
𝑥

· sin(2𝜋𝑥 − 𝑥c

𝜆p
) + 𝐵 · 𝑒

− 4𝜋𝛾p
𝜆p

𝑥

𝑥
+ 𝐼0, 𝐴p > 0, 𝛾p > 0, 𝜆p > 0, 𝐵 > 0 (S26)
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where 𝐴p = 2𝐴2𝑇 , 𝐵 = 𝐴2𝑇2, and 𝐼0 = 𝐴2. 𝐴p, 𝛾p, 𝜆p, 𝑥c, 𝐵, and 𝐼0 are fitting parameters.

For fitting the simulated HPPP wave, we use a simple damped sine wave function:

𝑦 = 𝐴p · 𝑒
− 4𝜋𝛾p

𝜆p
𝑥 · sin(2𝜋𝑥 − 𝑥c

𝜆p
) + 𝑦0, 𝐴p > 0, 𝛾p > 0, 𝜆p > 0 (S27)

where 𝐴p, 𝛾p, 𝜆p, 𝑥c, and 𝑦0 are fitting parameters. Note that the geometric spread is not

considered in equation (S27) since the simulated HPPP waves are excited by a plane-wave.

Figure S6. Polariton line profiles of the 140 nm single layer α-MoO3/graphene device. Line

profiles extracted along the [100] crystal direction (white dashed line in Figure 2a in the main

text) and averaged over 500 nm at different locations in the [001] crystal direction. The back

gate voltage 𝑉g was swept from 65V (corresponding to 0.21 eV, bottom line profile) to -65V

(corresponding to -0.35 eV, top line profile) in increments of 10V. The black dashed curve

indicates the variation trend of 𝜆p with 𝐸F.
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Section 7. Gate-tuning behavior of HPPPs in twisted bi-

layer α-MoO3/graphene across varying twist angles and

α-MoO3 thicknesses

Although our measurements predominantly centered around the twisted bilayer α-MoO3/gra-

phene device with a 47◦ twist angle, our findings concerning on the gate-tuning behavior of

𝜆p, 𝐴p, and 𝛾p remain applicable across all twist angles. To substantiate this claim, we

conducted numerical simulations on twisted bilayer α-MoO3/graphene devices, altering the

twist angles while maintaining the consistent thicknesses for the top and bottom α-MoO3

layers as presented in Figure 3 in the main text. The results are depicted in Figures S7 and

S8. Notably, irrespective of the twist angles considered, the dependency variations of the

three parameters on 𝐸F align well with the results and mechanisms elucidated in Figure 3

and Figure 4 in the main text, respectively.

In addition to twist angle, the thickness of α-MoO3 is another factor that can influence the

momentum of HPPPs. Our experimental findings, as depicted in Figure 2 and Figure S14,

showcase varied thickness of α-MoO3 in the single-layer α-MoO3/graphene device. Moreover,

the devices featuring different thicknesses of the top and bottom α-MoO3 layers in the

twisted bilayer configuration are presented in Figure 3 and Figure S5. A consistent trend

emerges from these data, reinforcing our assertion that the thickness of α-MoO3 does not

impact our primary findings on the gate-tuning behaviors of the three key parameters of

HPPPs. To further validity this, we performed numerical simulations on a twisted bilayer

α-MoO3/graphene device, altering the thicknesses of the top and bottom α-MoO3 layers.

The gate-dependent variations of the three HPPP parameters, as detailed in Figure S9

shows the same changing tendency observed in our other twisted devices. The results from

our simulations reinforce our conclusions about the gate-tuning behavior of HPPPs in both

single-layer and twisted bilayer α-MoO3/graphene heterostructures.
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Figure S7. Numerical simulations of gate-tuning behavior of HPPPs in a 20◦ twisted bilayer

α-MoO3/graphene heterostructure. (a-c) 𝐸F-dependent variations in the (a) wavelength, (b)

amplitude, and (c) dissipation rate of HPPPs, extracted from the fitting of simulated HPPP

line profiles along the [100] crystal direction of the top α-MoO3 layer. (d-f) Corresponding

variations for the bottom α-MoO3 layer. The α-MoO3 layers have thicknesses of 46 nm (top)

and 134 nm (bottom). The frequency of incident light is 931 cm−1. The error bars represent

the 95% confidence intervals. Red solid lines are guides for the eye.
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Figure S8. Numerical simulations of gate-tuning behavior of HPPPs in a 35◦ twisted bilayer

α-MoO3/graphene heterostructure. (a-c) 𝐸F-dependent variations in the (a) wavelength, (b)

amplitude, and (c) dissipation rate of HPPPs, extracted from the fitting of simulated HPPP

line profiles along the [100] crystal direction of the top α-MoO3 layer. (d-f) Corresponding

variations for the bottom α-MoO3 layer. The α-MoO3 layers have thicknesses of 46 nm (top)

and 134 nm (bottom). The frequency of incident light is 931 cm−1. The error bars represent

the 95% confidence intervals. Red solid lines are guides for the eye.
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Figure S9. Numerical simulations of gate-tuning behavior of HPPPs in a 47◦ twisted bilayer

α-MoO3/graphene heterostructure. (a-c) 𝐸F-dependent variations in the (a) wavelength, (b)

amplitude, and (c) dissipation rate of HPPPs, extracted from the fitting of simulated HPPP

line profiles along the [100] crystal direction of the top α-MoO3 layer. (d-f) Corresponding

variations for the bottom α-MoO3 layer. The α-MoO3 layers have thicknesses of 46 nm (top)

and 100 nm (bottom). The frequency of incident light is 931 cm−1. The error bars represent

the 95% confidence intervals. Red solid lines are guides for the eye.

Section 8. Gate-tuning of topological transition in twisted

bilayer α-MoO3/graphene heterostructure

The topological transition of HPPP iso-frequency contours (IFCs), transitioning from an

open hyperbolic to a closed elliptical shape, can be influenced by modulating the graphene

𝐸F.
5,15–17 In this section, we elucidate the gate-tuning of this topological transition in a

twisted bilayer α-MoO3/graphene heterostructure, utilizing numerical simulations for demon-

stration. The twist angle for the bilayer α-MoO3 was set to 60◦, aligning closely with the

photonic magic angle inherent to the heterostructure. The thicknesses of the top and bot-
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tom α-MoO3 layers were maintained the same as those of the devices showcased in Figure

3 in the main text. The IFCs derived from the FFT analysis of simulated field distribu-

tions (specifically, the real component of the z-oriented electric field, Re (𝐸z)), for 𝐸F values

spanning from 0 to -0.7 eV, are presented in Figure S10. Notably, the topological transition

occurs at around 𝐸F=-0.4 eV. This gate-tunable topological transition in twisted bilayer α-

MoO3/graphene heterostructure showcases the practical application potential of our device

configurations.

Figure S10. Gate-dependent topological transition in a twisted bilayer α-MoO3/graphene

heterostructure with a 60◦ twist angle. (a-f) Simulated IFCs of twisted bilayer α-

MoO3/graphene heterostructure. The graphene 𝐸F varies from 0 to -0.7 eV. The thicknesses

of the top and bottom α-MoO3 layers are 46 and 134 nm, respectively. The frequency of

incident light is 931 cm−1.
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Figure S11. Polariton line profiles of the twisted bilayer α-MoO3/graphene device. (a,b)

Line profiles extracted along the [100] crystal direction of the (a) top (cyan dashed line in

Figure 3a in the main text) and (b) bottom (white dashed line in Figure 3a in the main

text) layer α-MoO3 and averaged over 500 nm at different locations in the [001] crystal

direction. The back gate voltage 𝑉g was swept from 50V (corresponding to 0.16 eV, bottom

line profiles) to -60V (corresponding to -0.34 eV, top line profiles) in increments of 5V. The

graphene CNP occurs at 30V. The black dashed curve indicates the variation trend of 𝜆p

with 𝐸F.
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Figure S12. 𝐸F dependence of theoretically calculated absolute value of the imaginary

part of HPPP out-of-plane momentum |Im qz | along the [100] crystal direction of the bottom

α-MoO3 layer .
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Figure S13. Dependence of electric field distribution and simulated 𝛾p of HPPPs at different

height on 𝐸F. (a) Schematic of the electric field distribution |Ez | of HPPPs in the twisted

bilayer α-MoO3/graphene heterostructure along the 𝑧 direction, with 𝐸F = 0, -0.20 and -

0.34 eV. The |𝐸z | at the surface of the top α-MoO3 layer (𝑧 = 0 nm) is denoted by 𝐴0 and

decays exponentially to 𝐴p with increasing height 𝑧, from which we extract the simulation

results. (b) Dependence of simulated 𝛾p on 𝐸F at different heights (𝑧 = 0, 50 and 70 nm)

above the surface of the twisted bilayer α-MoO3/graphene, demonstrating independence of

𝑧. In both (a) and (b), the direction of 𝑞∥p aligns with the [100] crystal direction of the

bottom α-MoO3 layer. The error bars represent the 95% confidence intervals. Gray solid

line is a guide for the eye.
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Figure S14. Gate-tuning behavior of HPPPs in the 175 nm single-layer α-MoO3/graphene

device. (a) Near-field image with 𝐸F = −0.23 eV (corresponds to 𝑉g = 0V). Scale bar,

500 nm. (b-d) Dependence of (b) 𝜆p, (c) normalized 𝐴p, and (d) 𝛾p on 𝐸F, as fitted from

experimental (black dots) and numerically simulated (red dots) line profiles of HPPPs. The

error bars represent the 95% confidence intervals. Gray solid lines are guides for the eye.
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Figure S15. Calculated dispersion of the 140 nm single-layer α-MoO3/graphene het-

erostructure at various 𝐸F values. Black dots represent experimental data extracted from

Figure 2c in the main text.
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Figure S16. Calculated dispersion of the 175 nm single-layer α-MoO3/graphene het-

erostructure at various 𝐸F values. Black dots represent experimental data extracted from

Figure S14b.
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Figure S17. Calculated dispersion of the twisted bilayer α-MoO3/graphene with 𝑞
∥
p along

the [100] crystal direction of the top α-MoO3 layer at various 𝐸F values. The α-MoO3 layers

in the calculation have the same thickness combination and twisted angle as the device shown

in Figure 3 in the main text. Black dots represent experimental data extracted from Figure

3d in the main text.
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Figure S18. Calculated dispersion of twisted bilayer α-MoO3/graphene with 𝑞
∥
p along the

[100] crystal direction of the bottom α-MoO3 layer at various 𝐸F values. The α-MoO3 layers

in the calculation have the same thickness combination and twisted angle as the device shown

in Figure 3 in the main text. Black dots represent experimental data extracted from Figure

3g in the main text.
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Figure S19. Experimental (black dots) and transfer matrix method calculated (color plots)

dependence of 𝜆p on 𝐸F. (a,b) Single-layer α-MoO3/graphene heterostructures with α-MoO3

thicknesses (a) 𝑑 = 140 nm and (b) 𝑑 = 175 nm. (c,d) Twisted bilayer α-MoO3/graphene

heterostructures with 𝑞
∥
p along the [100] crystal direction of the (c) top and (d) bottom

α-MoO3 layers. Black dots in (a-d) represent experimental data extracted from Figure 2c,

Figure S14b, Figure 3d, and Figure 3g, respectively.
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